论文标题

贝叶斯非参数supdrodular视频分区,用于鲁棒异常检测

Bayesian Nonparametric Submodular Video Partition for Robust Anomaly Detection

论文作者

Sapkota, Hitesh, Yu, Qi

论文摘要

多种现实学习(MIL)提供了一种有效的方法来解决视频异常检测问题,通过将其建模为一个弱监督的问题,因为通常仅在视频级别上可用,而由于昂贵的标签成本而缺少框架。我们建议进行新型的贝叶斯非参数supdodular视频分区(BN-SVP),以显着改善MIL模型训练,该训练可以为在包括异常段或多种类型的异常事件的实用环境中提供高度可靠的解决方案,以实现可靠的异常检测。 BN-SVP基本上执行动态的非参数层次聚类,并通过增强的自我传输,将视频中的段分组为时间一致且具有语义上一致的隐藏状态,可以自然地将其解释为场景。假定每个片段是通过非参数混合过程生成的,该过程允许在相同场景中的各个片段变化,以适应许多实际监视视频的动态性和嘈杂性。 BN-SVP的场景和混合组件分配也诱导了段之间的成对相似性,从而导致非参数构造suppoular set函数。将此功能与MIL损失相结合,可以有效地将模型暴露于一组潜在的积极实例,以改善其训练。开发了一种贪婪的算法,以优化supporular函数和支持有效的模型训练。我们的理论分析确保了拟议算法的强大性能保证。在多个现实世界中的视频数据集中证明了所提出的方法的有效性,并具有强大的检测性能。

Multiple-instance learning (MIL) provides an effective way to tackle the video anomaly detection problem by modeling it as a weakly supervised problem as the labels are usually only available at the video level while missing for frames due to expensive labeling cost. We propose to conduct novel Bayesian non-parametric submodular video partition (BN-SVP) to significantly improve MIL model training that can offer a highly reliable solution for robust anomaly detection in practical settings that include outlier segments or multiple types of abnormal events. BN-SVP essentially performs dynamic non-parametric hierarchical clustering with an enhanced self-transition that groups segments in a video into temporally consistent and semantically coherent hidden states that can be naturally interpreted as scenes. Each segment is assumed to be generated through a non-parametric mixture process that allows variations of segments within the same scenes to accommodate the dynamic and noisy nature of many real-world surveillance videos. The scene and mixture component assignment of BN-SVP also induces a pairwise similarity among segments, resulting in non-parametric construction of a submodular set function. Integrating this function with an MIL loss effectively exposes the model to a diverse set of potentially positive instances to improve its training. A greedy algorithm is developed to optimize the submodular function and support efficient model training. Our theoretical analysis ensures a strong performance guarantee of the proposed algorithm. The effectiveness of the proposed approach is demonstrated over multiple real-world anomaly video datasets with robust detection performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源