论文标题

HM:用于几次分段的混合掩蔽

HM: Hybrid Masking for Few-Shot Segmentation

论文作者

Moon, Seonghyeon, Sohn, Samuel S., Zhou, Honglu, Yoon, Sejong, Pavlovic, Vladimir, Khan, Muhammad Haris, Kapadia, Mubbasir

论文摘要

我们研究了几个射击语义分割,旨在在提供目标类别的一些带注释的支持图像时,旨在从查询图像中分割目标对象。最近的几种方法求助于特征掩蔽技术(FM)技术,以丢弃无关紧要的特征激活,最终促进了分割蒙版的可靠预测。 FM的基本限制是无法保留影响分割面罩准确性的细粒度空间细节,尤其是对于小目标对象。在本文中,我们开发了一种简单,有效且有效的方法来增强特征掩蔽(FM)。我们将增强的FM称为杂交掩蔽(HM)。具体而言,我们通过研究和利用互补的基本输入掩蔽方法来弥补FM技术中细粒空间细节的损失。实验已经对三个公共可用的基准测试,具有强烈的少数分割(FSS)基准。我们通过跨不同基准的可见边缘在当前的最新方法中表现出了进步的性能。我们的代码和训练有素的模型可在以下网址找到:https://github.com/moonsh/hm-hybrid-masking

We study few-shot semantic segmentation that aims to segment a target object from a query image when provided with a few annotated support images of the target class. Several recent methods resort to a feature masking (FM) technique to discard irrelevant feature activations which eventually facilitates the reliable prediction of segmentation mask. A fundamental limitation of FM is the inability to preserve the fine-grained spatial details that affect the accuracy of segmentation mask, especially for small target objects. In this paper, we develop a simple, effective, and efficient approach to enhance feature masking (FM). We dub the enhanced FM as hybrid masking (HM). Specifically, we compensate for the loss of fine-grained spatial details in FM technique by investigating and leveraging a complementary basic input masking method. Experiments have been conducted on three publicly available benchmarks with strong few-shot segmentation (FSS) baselines. We empirically show improved performance against the current state-of-the-art methods by visible margins across different benchmarks. Our code and trained models are available at: https://github.com/moonsh/HM-Hybrid-Masking

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源