论文标题

RILI:强烈影响潜在意图

RILI: Robustly Influencing Latent Intent

论文作者

Parekh, Sagar, Habibian, Soheil, Losey, Dylan P.

论文摘要

当机器人与人类伴侣互动时,这些合作伙伴通常会因机器人而改变其行为。一方面,这很具有挑战性,因为机器人必须学会与动态合作伙伴进行协调。但是,另一方面 - 如果机器人理解这些动态 - 它可以利用自己的行为,影响人类,并指导团队进行有效的协作。先前的研究使机器人能够学会影响其他机器人或模拟药物。在本文中,我们将这些学习方法扩展到现在影响人类。使人类特别困难的原因是 - 人类不仅对机器人做出反应 - 而且单个用户对机器人的反应可能会随着时间而变化,而且不同的人类会以不同的方式对相同的机器人行为做出反应。因此,我们提出了一种强大的方法,该方法学会影响不断变化的伴侣动态。我们的方法首先在重复互动中与一组合作伙伴一起训练,并学会根据以前的状态,行动和奖励来预测当前伙伴的行为。接下来,我们通过对机器人与原始合作伙伴学习的轨迹进行采样轨迹迅速适应了新合作伙伴,然后利用这些现有行为来影响新的合作伙伴动态。我们将最终的算法与跨模拟环境和用户研究的最新基线进行比较,并在其中进行了机器人和参与者协作建造塔楼的用户研究。我们发现,即使合作伙伴遵循新的或意外的动态,我们的方法也优于替代方案。用户研究的视频可在此处提供:https://youtu.be/lyswm8an18g

When robots interact with human partners, often these partners change their behavior in response to the robot. On the one hand this is challenging because the robot must learn to coordinate with a dynamic partner. But on the other hand -- if the robot understands these dynamics -- it can harness its own behavior, influence the human, and guide the team towards effective collaboration. Prior research enables robots to learn to influence other robots or simulated agents. In this paper we extend these learning approaches to now influence humans. What makes humans especially hard to influence is that -- not only do humans react to the robot -- but the way a single user reacts to the robot may change over time, and different humans will respond to the same robot behavior in different ways. We therefore propose a robust approach that learns to influence changing partner dynamics. Our method first trains with a set of partners across repeated interactions, and learns to predict the current partner's behavior based on the previous states, actions, and rewards. Next, we rapidly adapt to new partners by sampling trajectories the robot learned with the original partners, and then leveraging those existing behaviors to influence the new partner dynamics. We compare our resulting algorithm to state-of-the-art baselines across simulated environments and a user study where the robot and participants collaborate to build towers. We find that our approach outperforms the alternatives, even when the partner follows new or unexpected dynamics. Videos of the user study are available here: https://youtu.be/lYsWM8An18g

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源