论文标题
物理知情的神经操作员的应用
Applications of physics informed neural operators
论文作者
论文摘要
我们提出了一个端到端框架,以学习偏微分方程,该方程将初始数据生产,边界条件的选择以及使用物理信息的神经操作员使用来求解在研究中无处不在的偏微分方程和物理现象的建模。我们首先证明我们的方法重现了文献中其他地方发表的其他神经操作员的准确性和性能,以学习1D波方程和一维汉堡方程。此后,我们将我们的物理知识的神经操作员学习新型的方程式,包括标量,Inviscid和向量类型中的2D汉堡方程。最后,我们表明我们的方法也适用于学习2D线性和非线性浅水方程的物理,这涉及三个耦合的偏微分方程。我们释放人工智能代理和科学软件,以产生初始数据和边界条件,以研究各种出于身体动机的情况。我们提供源代码,一个交互式网站,可视化物理知情的神经操作员的预测,以及在数据和学习中心的使用教程。
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.