论文标题

Q-FW:用于二进制优化的混合经典Quantum Frank-Wolfe

Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary Optimization

论文作者

Yurtsever, Alp, Birdal, Tolga, Golyanik, Vladislav

论文摘要

我们提出了一个基于Q-FW的Frank-Wolfe算法的混合经典量子框架,用于解决量子退火器(QA)上的二次,线性约束的二进制优化问题。量子计算机的计算前提已将各种现有视力问题的重新设计成量子友好的形式。实验QA实现可以解决一个特定的非凸问题,称为二次无约束的二进制优化(QUBO)。然而,幼稚的问题不能考虑到参数的限制。为了在参数空间中介绍其他结构,研究人员以正规化器的形式制定了纳入(线性)约束的临时解决方案。但是,这是以一个超级参数为代价的,平衡正规化的影响。迄今为止,缺乏二元优化(QBO)问题的真正约束求解器。 Q-FW首先将受限的QBO重新定义为共同计划(CP),然后采用Frank-Wolfe迭代来求解CP,同时满足线性(IN)平等约束。该过程将原始约束的QBO展开到一组无约束的Qubos中,所有这些QU在续集中均已在QA上求解。我们使用D-Wave Advantage QA对两个重要的计算机视觉问题(图形匹配和置换同步)进行合成和真实实验,这表明我们的方法有效地减轻了对显式正则化系数的需求。

We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linearly-constrained, binary optimization problems on quantum annealers (QA). The computational premise of quantum computers has cultivated the re-design of various existing vision problems into quantum-friendly forms. Experimental QA realizations can solve a particular non-convex problem known as the quadratic unconstrained binary optimization (QUBO). Yet a naive-QUBO cannot take into account the restrictions on the parameters. To introduce additional structure in the parameter space, researchers have crafted ad-hoc solutions incorporating (linear) constraints in the form of regularizers. However, this comes at the expense of a hyper-parameter, balancing the impact of regularization. To date, a true constrained solver of quadratic binary optimization (QBO) problems has lacked. Q-FW first reformulates constrained-QBO as a copositive program (CP), then employs Frank-Wolfe iterations to solve CP while satisfying linear (in)equality constraints. This procedure unrolls the original constrained-QBO into a set of unconstrained QUBOs all of which are solved, in a sequel, on a QA. We use D-Wave Advantage QA to conduct synthetic and real experiments on two important computer vision problems, graph matching and permutation synchronization, which demonstrate that our approach is effective in alleviating the need for an explicit regularization coefficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源