论文标题

静电相互作用对六角硼氮化硼 - 水界面中kapitza抗性的影响

Effects of electrostatic interactions on Kapitza resistance in hexagonal boron nitride-water interfaces

论文作者

Alosious, Sobin, Kannam, Sridhar Kumar, Sathian, Sarith P., Todd, B. D.

论文摘要

纳米级系统中的静电相互作用会影响传热机制和界面特性。这项研究使用分子动力学模拟来研究各种静电相互作用对Kapitza电阻($ R_K $)对六角形氮化硼系统的影响。六角硼氮化硼纳米管(HBNNT) - 水界面的耐药性随着纳米管直径的增加而降低,由于每个单位表面积的水分子的聚集更多,因此纳米管的直径增加。硼和氮化物的部分费用增加导致$ r_k $的减少。随着部分电荷的增加,观察到HBNNT和水之间更好的氢键,而水分子的结构和顺序保持不变。然而,将NaCl盐添加到水中不会对界面热传输产生任何影响。由于离子之间的累积库仑相互作用,与水分子相比,$ r_k $与电解质浓度保持不变。此外,还通过在最外层的HBN层上提供均匀的正面和负面电荷来研究电场强度对界面热传递的影响。 $ r_k $几乎独立于实用的应用电场范围,并且随着电场的增加而降低,直到发生电冻结现象。水分子向带电表面的排序导致分层效应的增加,从而导致电场存在的$ r_k $减少。

Electrostatic interactions in nanoscale systems can influence the heat transfer mechanism and interfacial properties. This study uses molecular dynamics simulations to investigate the impact of various electrostatic interactions on the Kapitza resistance ($R_k$) on a hexagonal boron nitride-water system. The Kapitza resistance at hexagonal boron nitride nanotube (hBNNT)-water interface reduces with an increase in diameter of the nanotube due to more aggregation of water molecules per unit surface area. An increase in the partial charges on boron and nitride caused the reduction in $R_k$. With the increase in partial charge, a better hydrogen bonding between hBNNT and water was observed, whereas the structure and order of the water molecules remain the same. Nevertheless, the addition of NaCl salt into water does not have any influence on interfacial thermal transport. $R_k$ remains unchanged with electrolyte concentration since the cumulative Coulombic interaction between the ions, and the hBNNT is significantly less when compared with water molecules. Furthermore, the effect of electric field strength on interfacial heat transfer is also investigated by providing uniform positive and negative surface charges on the outermost hBN layers. $R_k$ is nearly independent of the practical range of applied electric fields and decreases with an increasing electric field for extreme field strengths until the electro-freezing phenomenon occurs. The ordering of water molecules towards the charged surface leads to an increase in the layering effect, causing the reduction in $R_k$ in the presence of an electric field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源