论文标题

双子曲霉的双回路

Double circuits in bicircular matroids

论文作者

Guzmán-Pro, S., Hochstättler, W.

论文摘要

哈德威格(Hadwiger)针对定向的矩阵的猜想的第一个非平凡案例如下所示。如果$ \ MATHCAL {O} $是$ M(K_4)$ - 免费定向的Matroid,则$ \ Mathcal {O} $接纳A NZ $ 3 $ -COFLOW,即在Hochstättler-nešetmennešet月中,它是$ 3 $ -COLOURABLE。 γ类是$ m(k_4)$的类别 - 免费定向的矩阵,是最小的次要闭合类,其中包含所有横向矩阵。为了证明先前关于γ类,Goddyn,Hochstättler和Neudauer的陈述,指出每个伽马体都有阳性的coline(等效地,是一个正双回路),这意味着γ-所有方向均为$ 3 $ 3美元。在此简短的说明中,我们通过展示一大群不包含正双重电路的双圆形矩阵,反驳了Goddyn,Hochstättler和Neudauers的猜想。

The first non-trivial case of Hadwiger's conjecture for oriented matroids reads as follows. If $\mathcal{O}$ is an $M(K_4)$-free oriented matroid, then $\mathcal{O}$ admits a NZ $3$-coflow, i.e., it is $3$-colourable in the sense of Hochstättler-Nešetřil. The class of gammoids is a class of $M(K_4)$-free orientable matroids and it is the minimal minor-closed class that contains all transversal matroids. Towards proving the previous statement for the class of gammoids, Goddyn, Hochstättler, and Neudauer conjectured that every gammoid has a positive coline (equivalently, a positive double circuit), which implies that all orientations of gammoids are $3$-colourable. In this brief note we disprove Goddyn, Hochstättler, and Neudauers' conjecture by exhibiting a large class of bicircular matroids that do not contain positive double circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源