论文标题
标点符号修复的上下文感知功能融合框架
A Context-Aware Feature Fusion Framework for Punctuation Restoration
论文作者
论文摘要
为了完成标点符号恢复任务,大多数现有的方法都侧重于利用额外的信息(例如,词性标签)或解决类不平衡问题。最近的工作已广泛应用了基于变压器的语言模型,并显着提高了其有效性。据我们所知,固有的问题仍然被忽略了:在喂养长期的非召唤言论时,变压器中各个头部的注意力将被稀释或无能为力。由于这些以前的情况(不是以下情况)对当前位置的价值相对较有价值,因此很难通过独立的关注来达到良好的平衡。在本文中,我们提出了一个基于两种专注(FFA)的新型特征融合框架,以减轻短缺。它引入了两流体系结构。一个模块涉及注意力头之间的相互作用以鼓励通信,另一个掩盖了注意模块捕获了依赖的特征表示。然后,它汇总了两个功能嵌入以融合信息并增强上下文意识。流行的基准数据集IWSLT的实验表明我们的方法是有效的。没有其他数据,它可以获得与当前最新模型相当的性能。
To accomplish the punctuation restoration task, most existing approaches focused on leveraging extra information (e.g., part-of-speech tags) or addressing the class imbalance problem. Recent works have widely applied the transformer-based language models and significantly improved their effectiveness. To the best of our knowledge, an inherent issue has remained neglected: the attention of individual heads in the transformer will be diluted or powerless while feeding the long non-punctuation utterances. Since those previous contexts, not the followings, are comparatively more valuable to the current position, it's hard to achieve a good balance by independent attention. In this paper, we propose a novel Feature Fusion framework based on two-type Attentions (FFA) to alleviate the shortage. It introduces a two-stream architecture. One module involves interaction between attention heads to encourage the communication, and another masked attention module captures the dependent feature representation. Then, it aggregates two feature embeddings to fuse information and enhances context-awareness. The experiments on the popular benchmark dataset IWSLT demonstrate that our approach is effective. Without additional data, it obtains comparable performance to the current state-of-the-art models.