论文标题
图量量子蒙特卡洛(Monte Carlo)用于计算无序半导体中的传输性能
Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors
论文作者
论文摘要
提出了一种新的图形量子蒙特卡洛方法,以处理涉及动态障碍(即电子相互作用)和以统一和数值确切方式的局部或非局部性质的静态疾病的假想时间传播器。整个框架的建立依赖于一般的相互空间表达和静态疾病定理的广义定理。由于数值成本与系统大小无关,因此可以在热力学极限(系统大小中的无限限制)中有效评估各种物理量,例如热平均相干性,Matsubara One Particle Green的功能和当前的自相关功能。提出的方法的有效性和性能是在广泛的参数制度中系统地检查的。这种方法与适当的数值分析延续方法和第一原理计算相结合,预计将是一种多功能工具,用于计算各种传输属性,例如涉及多个电子能量带,高频光学带,高频和低频声音子,不同形式的动态和静态分离的型号,涉及多种电子能量的迁移率,andistic andisoders,antatic Disordorsers,Anisisoders,AnisoSotryer,等等,等等。
A new diagrammatic quantum Monte Carlo approach is proposed to deal with the imaginary time propagator involving both dynamic disorder (i.e., electron-phonon interactions) and static disorder of local or nonlocal nature in a unified and numerically exact way. The establishment of the whole framework relies on a general reciprocal-space expression and a generalized Wick's theorem for the static disorder. Since the numerical cost is independent of the system size, various physical quantities such as the thermally averaged coherence, Matsubara one-particle Green's function and current autocorrelation function can be efficiently evaluated in the thermodynamic limit (infinite in the system size). The validity and performance of the proposed approach are systematically examined in a broad parameter regimes. This approach, combined with proper numerical analytic continuation methods and first-principles calculations, is expected to be a versatile tool toward the calculation of various transport properties like mobilities in realistic semiconductors involving multiple electronic energy bands, high-frequency optical and low-frequency acoustic phonons, different forms of dynamic and static disorders, anisotropy, etc.