论文标题

基于熵的热磁现象理论:po载载体,涡旋和高级感应

Entropy-Based Theory of Thermomagnetic Phenomena: Poynting Vector, Vorticity, and Advanced Sensing

论文作者

Sergeev, Andrei, Reizer, Michael

论文摘要

我们表明,在线性响应中,仅熵在热现象和电现象之间提供耦合。无耗散的量子电流 - 磁化,超导,持续和拓扑边缘电流 - 不会产生和传递熵,并且可以从最终公式中排除用于热磁性系数的最终公式。在交叉的电场和磁场中的磁化能通量EM X E强烈修改了磁性材料和超材料中的Poynting载体,但不影响热电流。计算波动库珀对的熵通量,我们发现纯超导体的波动Nernst系数。为了考虑电子散射,我们概括了为Hall效应开发的量规不变的kubo形式主义对热磁熵转移的效果。我们还引入了每单位电荷的热磁熵,并得出与热电和热磁熵差异成正比的NERNS系数。这解释了热磁现象对相关性的sondheimer取消和高灵敏度。在2D超导体中,由涡流 - 抗逆转录对的涡流传递的传输熵是KB LN 2的配置熵,它强烈超过了Vortex Core的固有熵。除线性响应之外,非反向力还会导致热力学的现象,例如涡旋吸引到移动热点。量子电流不转移熵,可以用作理想的连接器到量子纳米估计器。

We show that in the linear response approximation only entropy provides coupling between thermal and electric phenomena. The dissipationless quantum currents -- magnetization, superconducting, persistent and topological edge currents -- do not produce and transfer entropy and may be excluded from final formulas for thermomagnetic coefficients. The magnetization energy flux, eM X E, in crossed electric and magnetic fields strongly modifies the Poynting vector in magnetic materials and metamaterials, but do not contribute to the heat current. Calculating entropy fluxes of fluctuating Cooper pairs, we find the fluctuation Nernst coefficient in pure superconductors. To account electron scattering, we generalize the gauge-invariant Kubo formalism developed for the Hall effect to thermomagnetic entropy transfer. We also introduce the thermomagnetic entropy per unit charge and derive the Nernst coefficient proportional to the difference of the thermoelectric and thermomagnetic entropies. This explains the Sondheimer cancellation and high sensitivity of thermomagnetic phenomena to correlations. In 2D superconductors, the transport entropy transferred by a vortex moving through the background formed by vortex-antivortex pairs is the configuration entropy of kB ln 2, which strongly exceeds the intrinsic entropy of vortex core. Beyond the linear response, the non-entropic forces can lead to phenomena unexpected from thermodynamics, such as vortex attraction to the moving hot spot. Quantum currents do not transfer entropy and may be used as ideal connectors to quantum nanodetectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源