论文标题
QUTRITS用于非自适应测量的量子计算的力量
The power of qutrits for non-adaptive measurement-based quantum computing
论文作者
论文摘要
非本地性不仅是最突出的量子功能之一,而且还可以作为各种信息理论任务的资源。从信息理论的角度分析它已将其与诸如基于非自适应测量的量子计算(NMQC)之类的应用联系起来。在这种类型的量子计算中,目标是输出多元函数。这样的计算的成功可能与违反广义铃铛不平等的行为有关。到目前为止,使用Qubits对二进制NMQC的研究表明,量子相关性可以使用最多使用$ 2^n-1 $ Qubits计算所有布尔函数,而局部隐藏变量(LHV)仅限于线性函数。在这里,我们使用QUTRIT将这些结果扩展到NMQC,并证明量子相关性可以使用广义Qutrit Greenberger-Horne-Zeilinger(GHz)状态来计算所有三元函数,最多最多3^n-1 $ Qutrits。对于LHV无法计算的任何三元函数,这会产生相应的广义GHz型悖论。我们给出了一个$ n $变量函数的示例,该函数只能使用$ n+1 $ qutrits计算,这导致了方便的Quintrit bell不平等,其量子绑定是最大的。最后,我们证明,并非所有功能都可以通过提出反例来有效地使用QUTRIT NMQC进行计算。
Non-locality is not only one of the most prominent quantum features but can also serve as a resource for various information-theoretical tasks. Analysing it from an information-theoretical perspective has linked it to applications such as non-adaptive measurement-based quantum computing (NMQC). In this type of quantum computing the goal is to output a multivariate function. The success of such a computation can be related to the violation of a generalised Bell inequality. So far, the investigation of binary NMQC with qubits has shown that quantum correlations can compute all Boolean functions using at most $2^n-1$ qubits, whereas local hidden variables (LHVs) are restricted to linear functions. Here, we extend these results to NMQC with qutrits and prove that quantum correlations enable the computation of all ternary functions using the generalised qutrit Greenberger-Horne-Zeilinger (GHZ) state as a resource and at most $3^n-1$ qutrits. This yields a corresponding generalised GHZ type paradox for any ternary function that LHVs cannot compute. We give an example for an $n$-variate function that can be computed with only $n+1$ qutrits, which leads to convenient generalised qutrit Bell inequalities whose quantum bound is maximal. Finally, we prove that not all functions can be computed efficiently with qutrit NMQC by presenting a counterexample.