论文标题

活动摄像头的自动对焦

Autofocus for Event Cameras

论文作者

Lin, Shijie, Zhang, Yinqiang, Yu, Lei, Zhou, Bin, Luo, Xiaowei, Pan, Jia

论文摘要

焦点控制(FC)对于在挑战性的现实情况下捕获锋利的图像至关重要。自动对焦(AF)通过自动调整焦点设置来促进FC。但是,由于缺乏最近引入的事件摄像机的有效AF方法,它们的FC仍然依赖于天真的AF,例如手动重点调整,从而导致在挑战性现实世界中的适应性不佳。特别是,事件和框架数据之间在感应方式,噪声,时间分辨率等方面的固有差异在设计有效的事件摄像机的AF方法方面带来了许多挑战。为了应对这些挑战,我们开发了一种新颖的基于事件的自动对焦框架,该框架由一个称为事件速率(ER)的事件特定焦点措施和称为基于事件的黄金搜索(EGS)的可靠搜索策略组成。为了验证我们的方法的性能,我们收集了一个基于事件的自动对焦数据集(EAD),该数据集包含良好的框架,事件和焦点位置,并在各种具有严重照明和运动条件的具有挑战性的场景中。该数据集和其他现实情况的实验证明了我们方法在效率和准确性方面的优越性优于最先进的方法。

Focus control (FC) is crucial for cameras to capture sharp images in challenging real-world scenarios. The autofocus (AF) facilitates the FC by automatically adjusting the focus settings. However, due to the lack of effective AF methods for the recently introduced event cameras, their FC still relies on naive AF like manual focus adjustments, leading to poor adaptation in challenging real-world conditions. In particular, the inherent differences between event and frame data in terms of sensing modality, noise, temporal resolutions, etc., bring many challenges in designing an effective AF method for event cameras. To address these challenges, we develop a novel event-based autofocus framework consisting of an event-specific focus measure called event rate (ER) and a robust search strategy called event-based golden search (EGS). To verify the performance of our method, we have collected an event-based autofocus dataset (EAD) containing well-synchronized frames, events, and focal positions in a wide variety of challenging scenes with severe lighting and motion conditions. The experiments on this dataset and additional real-world scenarios demonstrated the superiority of our method over state-of-the-art approaches in terms of efficiency and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源