论文标题
有效的恢复分段平坦量子重力的动作
Effective Actions for Regge Piecewise Flat Quantum Gravity
论文作者
论文摘要
我们审查了路径积分的构建和相应的有效作用,用于假设时空的短距离结构不是平滑的4个manifold,而是基于平滑的4个manifold的三角剖分。我们指出,尽管可以将其用于构建扰动有效的作用,但呈指数抑制的4卷路径概括度量并不具有有限的路径积分。我们通过将其乘以边缘长度的乘积的逆强力来修改4卷量度,从而使新措施具有有限的路径积分,同时它保留了未修改度量的所有不错的特征。
We review the construction of the path integral and the corresponding effective action for the Regge formulation of General Relativity under the assumption that the short-distance structure of the spacetime is not a smooth 4-manifold, but a picewise linear manifold based on a triangulation of a smooth 4-manifold. We point out that the exponentially damped 4-volume path-integral measure does not give a finite path integral, although it can be used for the construction of the perturbative effective action. We modify the 4-volume measure by multiplying it by an inverse power of the product of the edge-lengths such that the new measure gives a finite path integral while it retains all the nice features of the unmodified measure.