论文标题

混合特征上的非架构蒙格 - 安培方程

On the non-archimedean Monge-Ampère equation in mixed characteristic

论文作者

Fang, Yanbo, Gubler, Walter, Künnemann, Klaus

论文摘要

在完全离散价值的混合特性领域上,让X为平滑的投射品种。我们在x上解决了非架构的蒙格 - 安am方程,假设奇异点的分辨率和嵌入式分辨率。 We follow the variational approach of Boucksom, Favre, and Jonsson proving the continuity of the plurisubharmonic envelope of a continuous metric on an ample line bundle on X. We replace the use of multiplier ideals in equicharacteristic zero by the use of perturbation friendly test ideals introduced by Bhatt, Ma, Patakfalvi, Schwede, Tucker, Waldron, and维塔塞克(Witaszek)建立了Hacon,Lamarche和Schwede的先前建筑。

Let X be a smooth projective variety over a complete discretely valued field of mixed characteristic. We solve non-archimedean Monge-Ampère equations on X assuming resolution and embedded resolution of singularities. We follow the variational approach of Boucksom, Favre, and Jonsson proving the continuity of the plurisubharmonic envelope of a continuous metric on an ample line bundle on X. We replace the use of multiplier ideals in equicharacteristic zero by the use of perturbation friendly test ideals introduced by Bhatt, Ma, Patakfalvi, Schwede, Tucker, Waldron, and Witaszek building upon previous constructions by Hacon, Lamarche, and Schwede.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源