论文标题
DAN:手写文档识别的无细分文档注意网络
DAN: a Segmentation-free Document Attention Network for Handwritten Document Recognition
论文作者
论文摘要
无约束的手写文本识别是一项具有挑战性的计算机视觉任务。传统上,它是通过两步方法来处理的,结合了线细分,然后是文本线识别。我们首次为手写文档识别任务提出了一个无端到端的无分段体系结构:文档注意网络。除文本识别外,该模型还接受了以XML样式的开始和结束标签标记文本零件的训练。该模型由用于特征提取的FCN编码器和用于复发令牌预测过程的变压器解码器层组成。它将整个文本文档作为输入和顺序输出字符以及逻辑布局令牌。与现有的基于分割的方法相反,该模型是在不使用任何分割标签的情况下训练的。我们在页面级别的Read 2016数据集以及CER分别为3.43%和3.70%的双页级别上获得了竞争成果。我们还为Rimes 2009数据集提供了页面级别的结果,达到CER的4.54%。 我们在https://github.com/factodeeplearning/dan上提供所有源代码和预训练的模型权重。
Unconstrained handwritten text recognition is a challenging computer vision task. It is traditionally handled by a two-step approach, combining line segmentation followed by text line recognition. For the first time, we propose an end-to-end segmentation-free architecture for the task of handwritten document recognition: the Document Attention Network. In addition to text recognition, the model is trained to label text parts using begin and end tags in an XML-like fashion. This model is made up of an FCN encoder for feature extraction and a stack of transformer decoder layers for a recurrent token-by-token prediction process. It takes whole text documents as input and sequentially outputs characters, as well as logical layout tokens. Contrary to the existing segmentation-based approaches, the model is trained without using any segmentation label. We achieve competitive results on the READ 2016 dataset at page level, as well as double-page level with a CER of 3.43% and 3.70%, respectively. We also provide results for the RIMES 2009 dataset at page level, reaching 4.54% of CER. We provide all source code and pre-trained model weights at https://github.com/FactoDeepLearning/DAN.