论文标题

扭曲以检测而不是影响:通过微渗透检测隐形传感器攻击

Distort to Detect, not Affect: Detecting Stealthy Sensor Attacks with Micro-distortion

论文作者

Sourav, Suman, Chen, Binbin

论文摘要

在本文中,我们提出了一种有效且易于部署的方法,以检测工业控制系统中隐身传感器攻击的存在,在该系统中,(遗产)控制设备非常依赖于准确(通常是非加密的)传感器读数。具体来说,我们专注于隐身攻击,这些攻击撞击传感器,然后立即通过发送假读数来模仿传感器。我们考虑攻击者,他们旨在长时间隐藏在系统中。为了检测这种攻击,我们的方法依赖于对原始传感器读数的“微扭曲”的连续注入。特别是,注射的失真应严格保存在较小的幅度(例如,$ 0.5 \%$的工作值范围)中,以确保它不会影响ICS的正常功能。我们的方法使用传感器和防御者之间的预共享秘密序列来生成微阶段。一个关键的挑战是,注入的微距离通常比传感器的实际读数要低得多,因此很容易被后者淹没。为了克服这一点,我们利用了这样一个观察结果,即许多IC(尤其是功率网格)中的传感器读数通常在很大一部分的时间内逐渐变化(即连续的时间插槽之间的差异很小)。我们设计了一种简单而有效的算法,该算法可以以高度准确,快速(即使用少于100个样本)方式检测隐形攻击者。我们使用来自两个不同智能网格系统的现实世界传感器读取轨迹来证明防御的有效性。

In this paper, we propose an effective and easily deployable approach to detect the presence of stealthy sensor attacks in industrial control systems, where (legacy) control devices critically rely on accurate (and usually non-encrypted) sensor readings. Specifically, we focus on stealthy attacks that crash a sensor and then immediately impersonate that sensor by sending out fake readings. We consider attackers who aim to stay hidden in the system for a prolonged period. To detect such attacks, our approach relies on continuous injection of "micro distortion" to the original sensor's readings. In particular, the injected distortion should be kept strictly within a small magnitude (e.g., $0.5\%$ of the possible operating value range), to ensure it does not affect the normal functioning of the ICS. Our approach uses a pre-shared secret sequence between a sensor and the defender to generate the micro-distortions. One key challenge is that the micro-distortions injected are often much lower than the sensor's actual readings, hence can be easily overwhelmed by the latter. To overcome this, we leverage the observation that sensor readings in many ICS (and power grid in particular) often change gradually in a significant fraction of time (i.e., with small difference between consecutive time slots). We devise a simple yet effective algorithm that can detect stealthy attackers in a highly accurate and fast (i.e., using less than 100 samples) manner. We demonstrate the effectiveness of our defense using real-world sensor reading traces from two different smart grid systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源