论文标题
通过非交流反馈化学信号在物理网络中学习
Learning by non-interfering feedback chemical signaling in physical networks
论文作者
论文摘要
非神经和神经生物系统都可以学习。因此,与其专注于纯粹的大脑般的学习,不如在研究物理系统中学习学习的努力。这样的努力包括平衡传播(EP)和耦合学习(CL),它们需要存储两个不同的状态 - 自由状态以及扰动的状态,以保留有关梯度的信息。受粘液模具的启发,我们提出了一种植根于化学信号传导的新学习算法,该算法不需要两个不同的状态。相反,输出误差信息是以与激活/前馈信号相似的化学信号中的化学信号编码。稳态反馈化学浓度以及激活信号在本地存储所需的梯度信息。我们使用物理,线性流网络应用算法,并使用具有93%精度的虹膜数据集对其进行测试。我们还证明我们的算法执行梯度下降。最后,除了将我们的算法与EP和CL进行比较外,我们还解决了该算法的生物学合理性。
Both non-neural and neural biological systems can learn. So rather than focusing on purely brain-like learning, efforts are underway to study learning in physical systems. Such efforts include equilibrium propagation (EP) and coupled learning (CL), which require storage of two different states-the free state and the perturbed state-during the learning process to retain information about gradients. Inspired by slime mold, we propose a new learning algorithm rooted in chemical signaling that does not require storage of two different states. Rather, the output error information is encoded in a chemical signal that diffuses into the network in a similar way as the activation/feedforward signal. The steady state feedback chemical concentration, along with the activation signal, stores the required gradient information locally. We apply our algorithm using a physical, linear flow network and test it using the Iris data set with 93% accuracy. We also prove that our algorithm performs gradient descent. Finally, in addition to comparing our algorithm directly with EP and CL, we address the biological plausibility of the algorithm.