论文标题

通过非交流反馈化学信号在物理网络中学习

Learning by non-interfering feedback chemical signaling in physical networks

论文作者

Anisetti, Vidyesh Rao, Scellier, B., Schwarz, J. M.

论文摘要

非神经和神经生物系统都可以学习。因此,与其专注于纯粹的大脑般的学习,不如在研究物理系统中学习学习的努力。这样的努力包括平衡传播(EP)和耦合学习(CL),它们需要存储两个不同的状态 - 自由状态以及扰动的状态,以保留有关梯度的信息。受粘液模具的启发,我们提出了一种植根于化学信号传导的新学习算法,该算法不需要两个不同的状态。相反,输出误差信息是以与激活/前馈信号相似的化学信号中的化学信号编码。稳态反馈化学浓度以及激活信号在本地存储所需的梯度信息。我们使用物理,线性流网络应用算法,并使用具有93%精度的虹膜数据集对其进行测试。我们还证明我们的算法执行梯度下降。最后,除了将我们的算法与EP和CL进行比较外,我们还解决了该算法的生物学合理性。

Both non-neural and neural biological systems can learn. So rather than focusing on purely brain-like learning, efforts are underway to study learning in physical systems. Such efforts include equilibrium propagation (EP) and coupled learning (CL), which require storage of two different states-the free state and the perturbed state-during the learning process to retain information about gradients. Inspired by slime mold, we propose a new learning algorithm rooted in chemical signaling that does not require storage of two different states. Rather, the output error information is encoded in a chemical signal that diffuses into the network in a similar way as the activation/feedforward signal. The steady state feedback chemical concentration, along with the activation signal, stores the required gradient information locally. We apply our algorithm using a physical, linear flow network and test it using the Iris data set with 93% accuracy. We also prove that our algorithm performs gradient descent. Finally, in addition to comparing our algorithm directly with EP and CL, we address the biological plausibility of the algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源