论文标题
Wayfast:在现场进行预测性遍历的导航
WayFAST: Navigation with Predictive Traversability in the Field
论文作者
论文摘要
我们提出了一种学习的方法,用于学习预测需要良好牵引力才能导航的轮式移动机器人的可穿越路径。我们的算法称为WayFast(用于遍历性的无自主系统),使用RGB和深度数据以及导航经验,自主在室外非结构化环境中自主生成可遍历的路径。我们的主要灵感是,可以使用动力动力学模型估算滚动机器人的牵引力。使用在线退化估计器提供的牵引力估计值,我们能够以自我监督的方式训练遍及性的预测神经网络,而无需以前的方法使用的启发式方法。我们通过在各种环境中进行广泛的田间测试来证明Wayfast的有效性,从沙滩到森林檐篷和积雪覆盖的草田不等。我们的结果清楚地表明,Wayfast可以学会避免几何障碍物以及不可转化的地形,例如雪,而仅提供仅提供几何数据的传感器(例如LiDAR)很难避免。此外,我们表明,基于在线牵引力估计的培训管道比其他基于启发式的方法更具数据效率。
We present a self-supervised approach for learning to predict traversable paths for wheeled mobile robots that require good traction to navigate. Our algorithm, termed WayFAST (Waypoint Free Autonomous Systems for Traversability), uses RGB and depth data, along with navigation experience, to autonomously generate traversable paths in outdoor unstructured environments. Our key inspiration is that traction can be estimated for rolling robots using kinodynamic models. Using traction estimates provided by an online receding horizon estimator, we are able to train a traversability prediction neural network in a self-supervised manner, without requiring heuristics utilized by previous methods. We demonstrate the effectiveness of WayFAST through extensive field testing in varying environments, ranging from sandy dry beaches to forest canopies and snow covered grass fields. Our results clearly demonstrate that WayFAST can learn to avoid geometric obstacles as well as untraversable terrain, such as snow, which would be difficult to avoid with sensors that provide only geometric data, such as LiDAR. Furthermore, we show that our training pipeline based on online traction estimates is more data-efficient than other heuristic-based methods.