论文标题

生成建模有助于弱监督(反之亦然)

Generative Modeling Helps Weak Supervision (and Vice Versa)

论文作者

Boecking, Benedikt, Roberts, Nicholas, Neiswanger, Willie, Ermon, Stefano, Sala, Frederic, Dubrawski, Artur

论文摘要

监督机器学习的许多有前途的应用在以足够数量和质量的方式获取标记的数据中面临障碍,从而产生了昂贵的瓶颈。为了克服此类局限性,已经研究了不依赖地面真相标签的技术,包括弱监督和生成建模。尽管这些技术似乎可以在一致的协作中使用,但如何建立它们之间的界面并不理解。在这项工作中,我们提出了一个模型,融合了程序化的弱监督和生成对抗网络,并提供了促使这种融合的理论理由。所提出的方法将捕获数据中的离散潜在变量以及弱监督得出的标签估计。两者的比对可以更好地建模弱监督源的样本依赖性精度,从而改善了未观察到的标签的估计。这是通过弱监督的合成图像和伪标记来启用数据增强的第一种方法。此外,可以定性地检查其学习的潜在变量。该模型在许多多类图像分类数据集上优于基线弱监督标签模型,改善了生成的图像的质量,并通过使用合成样本进行数据增强来进一步改善最终模型性能。

Many promising applications of supervised machine learning face hurdles in the acquisition of labeled data in sufficient quantity and quality, creating an expensive bottleneck. To overcome such limitations, techniques that do not depend on ground truth labels have been studied, including weak supervision and generative modeling. While these techniques would seem to be usable in concert, improving one another, how to build an interface between them is not well-understood. In this work, we propose a model fusing programmatic weak supervision and generative adversarial networks and provide theoretical justification motivating this fusion. The proposed approach captures discrete latent variables in the data alongside the weak supervision derived label estimate. Alignment of the two allows for better modeling of sample-dependent accuracies of the weak supervision sources, improving the estimate of unobserved labels. It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels. Additionally, its learned latent variables can be inspected qualitatively. The model outperforms baseline weak supervision label models on a number of multiclass image classification datasets, improves the quality of generated images, and further improves end-model performance through data augmentation with synthetic samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源