论文标题
Rokhlin引理,用于不可切除的完全订购的措施的动力学系统
A Rokhlin Lemma for Noninvertible Totally-Ordered Measure-Preserving Dynamical Systems
论文作者
论文摘要
令$(X,\ Mathcal {f},μ,t)$为不一定是可逆的非原子量度呈现动力学系统,其中$σ$ -Algebra $ \ Mathcal {f} $是由间隔根据某些总顺序生成的。主要的结果是,假设略微延伸,经典的Rokhlin引理可以适应这种情况。将该结果与以前的Rokhlin引理的先前不可易换版本进行了比较。
Let $(X,\mathcal{F},μ,T)$ be a not necessarily invertible non-atomic measure-preserving dynamical system where the $σ$-algebra $\mathcal{F}$ is generated by the intervals according to some total order. The main result is that the classical Rokhlin lemma may be adapted to such a situation assuming a slight extension of aperiodicity. This result is compared to previous noninvertible versions of the Rokhlin lemma.