论文标题

基于因素的决策能力自我评估框架

A Factor-Based Framework for Decision-Making Competency Self-Assessment

论文作者

Israelsen, Brett W., Ahmed, Nisar

论文摘要

我们总结了我们迄今为止的努力,以开发一个框架,以基于机器自信心,即机器人在完成指定任务的功能能力方面的自信心,即机器人的自信心。尽管早期工作探索了机器以适当的方式进行利基应用程序,但我们的分解机器自信框架引入并结合了概率元元推理的几个方面,用于算法计划和决策,以使其不确定,以使一系列可用于竞争的自信心因素,以支持竞争性的自信心因素,以支持竞争力的评估,以评估各种各样的问题。

We summarize our efforts to date in developing a framework for generating succinct human-understandable competency self-assessments in terms of machine self confidence, i.e. a robot's self-trust in its functional abilities to accomplish assigned tasks. Whereas early work explored machine self-confidence in ad hoc ways for niche applications, our Factorized Machine Self-Confidence framework introduces and combines several aspects of probabilistic meta reasoning for algorithmic planning and decision-making under uncertainty to arrive at a novel set of generalizable self-confidence factors, which can support competency assessment for a wide variety of problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源