论文标题

向所有车辆学习

Learning from All Vehicles

论文作者

Chen, Dian, Krähenbühl, Philipp

论文摘要

在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是控制工具的观点不变的。这不仅在训练时提供了更丰富的信号,而且还允许推理期间更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并可以避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021 Carla自主驾驶挑战。代码和数据可在https://github.com/dotchen/lav上找到。

In this paper, we present a system to train driving policies from experiences collected not just from the ego-vehicle, but all vehicles that it observes. This system uses the behaviors of other agents to create more diverse driving scenarios without collecting additional data. The main difficulty in learning from other vehicles is that there is no sensor information. We use a set of supervisory tasks to learn an intermediate representation that is invariant to the viewpoint of the controlling vehicle. This not only provides a richer signal at training time but also allows more complex reasoning during inference. Learning how all vehicles drive helps predict their behavior at test time and can avoid collisions. We evaluate this system in closed-loop driving simulations. Our system outperforms all prior methods on the public CARLA Leaderboard by a wide margin, improving driving score by 25 and route completion rate by 24 points. Our method won the 2021 CARLA Autonomous Driving challenge. Code and data are available at https://github.com/dotchen/LAV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源