论文标题

通过匹配训练轨迹来蒸馏数据集蒸馏

Dataset Distillation by Matching Training Trajectories

论文作者

Cazenavette, George, Wang, Tongzhou, Torralba, Antonio, Efros, Alexei A., Zhu, Jun-Yan

论文摘要

数据集蒸馏是合成一个小数据集的任务,以便在合成集上训练的模型将与完整数据集训练的模型的测试准确性相匹配。在本文中,我们提出了一种新的公式,该公式优化了我们的蒸馏数据,以指导网络达到与在许多培训步骤中对真实数据进行培训的数据相似的状态。给定一个网络,我们将其训练在我们的蒸馏数据上进行多次迭代,并相对于经过合成训练的参数与对实际数据训练的参数优化蒸馏数据。为了有效地获得大型数据集的初始和目标网络参数,我们预先计算和存储了在真实数据集中训练的专家网络的培训轨迹。我们的方法便利地优于现有方法,还使我们能够提炼高分辨率的视觉数据。

Dataset distillation is the task of synthesizing a small dataset such that a model trained on the synthetic set will match the test accuracy of the model trained on the full dataset. In this paper, we propose a new formulation that optimizes our distilled data to guide networks to a similar state as those trained on real data across many training steps. Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data. To efficiently obtain the initial and target network parameters for large-scale datasets, we pre-compute and store training trajectories of expert networks trained on the real dataset. Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源