论文标题

扩展的宇宙中的水磁波 - 使用分析解决方案的宇宙学MHD代码测试

Hydromagnetic waves in an expanding universe -- cosmological MHD code tests using analytic solutions

论文作者

Berlok, Thomas

论文摘要

我们描述了如何将线性水磁波的分析溶液用于测试宇宙学磁流失动力学(MHD)代码。我们从共同的MHD方程式开始,并得出分析溶液,用于在具有物质主导的Einstein-De-Sitter(EDS)宇宙中线性水磁波的振幅演化。所考虑的波是共同的,线性极化的alfvén波和共同的波动,磁体(快速)波通过自我重度修饰。对于一般的绝热指数,发现了可压缩波的解,除了完整的溶液外,我们还考虑了没有自我重力的流体动力学的限制。除了这些分析解决方案外,线性化方程还用于$λ$ CDM宇宙学。我们使用分析和数字解决方案与使用宇宙学MHD代码AREPO获得的结果进行比较,并在使用足够数量的网格点时找到良好的一致性。我们通过进一步推导了包括物理Navier-Stokes粘度的AlfVén波解决方案来解释在几乎没有网格点的模拟中清楚地表明的数值阻尼。 Alfvén波模拟与理论之间的比较表明,可以通过数值粘度系数$η_\ Mathrm {num} \ propto a^{ - 5/2} $描述耗散,其中$ a $是比例因子。我们设想,在制定新的宇宙学MHD代码或现有代码的回归测试时,我们的示例可能很有用。

We describe how analytic solutions for linear hydromagnetic waves can be used for testing cosmological magnetohydrodynamic (MHD) codes. We start from the comoving MHD equations and derive analytic solutions for the amplitude evolution of linear hydromagnetic waves in a matter-dominated, flat Einstein-de-Sitter (EdS) universe. The waves considered are comoving, linearly polarized Alfvén waves and comoving, magnetosonic (fast) waves modified by self-gravity. The solution for compressible waves is found for a general adiabatic index and we consider the limits of hydrodynamics without self-gravity in addition to the full solution. In addition to these analytic solutions, the linearized equations are solved numerically for a $Λ$CDM cosmology. We use the analytic and numeric solutions to compare with results obtained using the cosmological MHD code AREPO and find good agreement when using a sufficient number of grid points. We interpret the numerical damping clearly evident in simulations with few grid points by further deriving the Alfvén wave solution including physical Navier-Stokes viscosity. A comparison between Alfvén wave simulations and theory reveals that the dissipation can be described by a numerical viscosity coefficient $η_\mathrm{num} \propto a^{-5/2}$ where $a$ is the scale factor. We envision that our examples could be useful when developing a new cosmological MHD code or for regression testing of existing codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源