论文标题
在变压器网络的引擎盖下进行轨迹预测
Under the Hood of Transformer Networks for Trajectory Forecasting
论文作者
论文摘要
变形金刚网络已确立自己是轨迹预测的最先进的事实,但是目前尚无对其对人的运动模式建模的能力进行系统的研究,而没有与其他人或社会环境进行互动。本文提出了对变压器网络(TF)和双向变压器(BERT)的首次深入研究,以预测人们的个人运动,而没有铃铛和哨声。我们对输入/输出表示,问题公式和序列建模进行详尽的评估,包括对它们预测多模式期货能力的新分析。通过对ETH+UCY基准测试的比较评估,TF和BERT都是预测单个动作的最佳表现,绝对克服了RNN和LSTMS。此外,它们保持在狭窄的范围内更复杂的技术,其中包括社交互动和场景环境。源代码将用于所有进行的实验。
Transformer Networks have established themselves as the de-facto state-of-the-art for trajectory forecasting but there is currently no systematic study on their capability to model the motion patterns of people, without interactions with other individuals nor the social context. This paper proposes the first in-depth study of Transformer Networks (TF) and Bidirectional Transformers (BERT) for the forecasting of the individual motion of people, without bells and whistles. We conduct an exhaustive evaluation of input/output representations, problem formulations and sequence modeling, including a novel analysis of their capability to predict multi-modal futures. Out of comparative evaluation on the ETH+UCY benchmark, both TF and BERT are top performers in predicting individual motions, definitely overcoming RNNs and LSTMs. Furthermore, they remain within a narrow margin wrt more complex techniques, which include both social interactions and scene contexts. Source code will be released for all conducted experiments.