论文标题

一种从Reddit了解心理健康的计算方法:知识吸引的多任务学习框架

A Computational Approach to Understand Mental Health from Reddit: Knowledge-aware Multitask Learning Framework

论文作者

Lokala, Usha, Srivastava, Aseem, Dastidar, Triyasha Ghosh, Chakraborty, Tanmoy, Akthar, Md Shad, Panahiazar, Maryam, Sheth, Amit

论文摘要

分析性别对于研究心理健康(MH)支持CVD至关重要(心血管疾病)。现有关于使用社交媒体提取MH症状的研究考虑症状检测,并且倾向于忽略用户的情况,疾病或性别。当前的研究旨在设计和评估一个系统,以捕获与CVD相关的MH症状如何与社交媒体上的性别不同。我们观察到,由于(DIS)在一个帖子中(DIS)类似的MH症状的共存以及基于性别的症状描述的差异,因此在用户职位中患有心脏病患者表达的MH症状的可靠检测是具有挑战性的。我们收集使用SubReddit标签和转移学习方法注释的$ 150K $项目(帖子和评论)的语料库。我们提出了GEM是一种新型的任务自适应多任务学习方法,可以根据性别确定CVD患者的MH症状。具体而言,我们适应了基于罗伯塔的知识辅助双重编码模型来捕获与CVD相关的MH症状。此外,与最先进的语言模型相比,它增强了在MH症状中区分性别语言的可靠性。我们的模型达到了高(统计学意义)的性能,并预测了MH问题和两个性别标签的四个标签,这表现优于Roberta,在症状识别任务上提高了2.14%的召回率,在性别识别任务上提高了2.55%。

Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of $150k$ items (posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adapt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源