论文标题
一项关于由偏心von Zeipel-Lidov-Kozai效应引起的测试颗粒轨道翻转的系统研究
A systematic study about orbit flips of test particles caused by eccentric von Zeipel-Lidov-Kozai effects
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The problem of orbit flips caused by eccentric von Zeipel-Lidov-Kozai effects is systematically investigated by means of three approaches, including Poincaré sections, dynamical system theory (periodic orbits and invariant manifolds) and perturbation treatments. Poincaré sections show that orbit flips are due to the existence of islands of libration centered at inclination of $90^{\circ}$, dynamical system theory shows that orbit flips are due to the existence of polar periodic orbits and invariant manifolds, and perturbative treatments indicate that orbit flips are due to the libration of a certain critical argument. Using these approaches, the boundaries of flipping regions in the entire parameter space are produced and they are in excellent agreement with each other. Through analysis, the essence of flipping orbits is reached: (a) flipping orbits are a kind of quasi-periodic trajectories around polar periodic orbits and invariant manifolds at the same level of Hamiltonian provide boundaries of flipping regions, and (b) flipping orbits are a kind of resonant trajectories and resonant width measures the size of flipping regions.