论文标题

部分可观测时空混沌系统的无模型预测

Exploring Linear Feature Disentanglement For Neural Networks

论文作者

He, Tiantian, Li, Zhibin, Gong, Yongshun, Yao, Yazhou, Nie, Xiushan, Yin, Yilong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs). Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space. This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs, i.e., whether there exists a part of features arriving at the linear separable feature space in the intermediate layers, that does not require further non-linear variation but an affine transformation instead. To validate the above hypothesis, we explore the problem of linear feature disentanglement for neural networks in this paper. Specifically, we devise a learnable mask module to distinguish between linear and non-linear features. Through our designed experiments we found that some features reach the linearly separable space earlier than the others and can be detached partly from the NNs. The explored method also provides a readily feasible pruning strategy which barely affects the performance of the original model. We conduct our experiments on four datasets and present promising results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源