论文标题
具有高度不平衡语义标签的全景分割
Panoptic segmentation with highly imbalanced semantic labels
论文作者
论文摘要
我们在这里描述了我们为参与圆锥体的综合分割方法描述:在ISBI 2022上的圆锥形核心识别和计数挑战。我们方法的关键特征是一种专门设计的,专门设计用于高度不平衡的细胞类型的语义细分,以及最先进的实例实例分割模型,我们将其组合为介绍型的建筑型式建筑型型式建筑。
We describe here the panoptic segmentation method we devised for our participation in the CoNIC: Colon Nuclei Identification and Counting Challenge at ISBI 2022. Key features of our method are a weighted loss specifically engineered for semantic segmentation of highly imbalanced cell types, and a state-of-the art nuclei instance segmentation model, which we combine in a Hovernet-like architecture.