论文标题

联合域概括的特征分布匹配

Feature Distribution Matching for Federated Domain Generalization

论文作者

Sun, Yuwei, Chong, Ng, Ochiai, Hideya

论文摘要

多源域的适应性已深入研究。特定域固有的特征的分布变化会导致负转移问题,从而降低模型的一般性,从而看不见任务。在联合学习(FL)中,共享学习的模型参数以训练一个全球模型,该模型利用了在单独的数据域中训练的客户模型的基础知识。但是,FL的数据机密性阻碍了需要先验了解不同域数据的传统领域适应方法的有效性。我们提出了一种称为联邦知识一致性(FEDKA)的新联邦域泛化方法。在全局工作区中,FEDKA利用功能分布匹配,以便全局模型可以在未知客户端数据的约束下学习域不变的客户端功能。 FEDKA采用了一种联合投票机制,该机制基于客户的共识来生成目标域伪标签,以促进全球模型微调。我们进行了广泛的实验,包括消融研究,以使用不同的模型体系结构来评估所提出方法在图像和文本分类任务中的有效性。经验结果表明,FEDKA在数字五和Office-Caltech10中的性能增长分别为8.8%和3.5%,并且在亚马逊审查中,Amazon Review的绩效增长率分别为0.7%。此外,我们研究了FEDKA根据称为组效应的新标准来减轻FL的负转移的有效性。结果表明,FEDKA可以减少负转移,从而通过模型汇总提高性能增长4次。

Multi-source domain adaptation has been intensively studied. The distribution shift in features inherent to specific domains causes the negative transfer problem, degrading a model's generality to unseen tasks. In Federated Learning (FL), learned model parameters are shared to train a global model that leverages the underlying knowledge across client models trained on separate data domains. Nonetheless, the data confidentiality of FL hinders the effectiveness of traditional domain adaptation methods that require prior knowledge of different domain data. We propose a new federated domain generalization method called Federated Knowledge Alignment (FedKA). FedKA leverages feature distribution matching in a global workspace such that the global model can learn domain-invariant client features under the constraint of unknown client data. FedKA employs a federated voting mechanism that generates target domain pseudo-labels based on the consensus from clients to facilitate global model fine-tuning. We performed extensive experiments, including an ablation study, to evaluate the effectiveness of the proposed method in both image and text classification tasks using different model architectures. The empirical results show that FedKA achieves performance gains of 8.8% and 3.5% in Digit-Five and Office-Caltech10, respectively, and a gain of 0.7% in Amazon Review with extremely limited training data. Moreover, we studied the effectiveness of FedKA in alleviating the negative transfer of FL based on a new criterion called Group Effect. The results show that FedKA can reduce negative transfer, improving the performance gain via model aggregation by 4 times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源