论文标题

通过O(n)群岛导航

Navigating through the O(N) archipelago

论文作者

Sirois, Benoit

论文摘要

最近在ARXIV中提出了一种在CFT数据空间(CFT-DATA)(CFT-DATA)空间中的区域的新方法,该方法在ARXIV:2104.09518中提出。在最简单的示例中,即3D ISING模型的混合相关研究的功效证明了其功效。在本文中,我们想证明,导航器方法也可以应用于$ d $二维$ o(n)$型号的家族的研究。我们的目标是在$(d,n)$平面中遵循这些模型。我们将看到,从岛到岛的“航行”可以在导航器的背景下被理解为参数优化问题,我们将利用这一事实来实施一种简单有效的路径遵循算法。通过与$(d,n)$平面一起航行,我们将在整个范围$(d,n)\ in [3,4] \ times [1,3] $中提供缩放尺寸$(δ_2,δ__{s},δ__{s},δ__{t})$。我们将表明,由于该范围内的$ d $或$ n $的分数值,因此我们无法看到$ O(N)$模型的非独立性。我们还将研究限制$ n \ xrightArrow [] {} 1 $,并且看到我们找不到对低于$ n = 1 $的单一混合相关跨方程的任何解决方案。

A novel method for finding allowed regions in the space of CFT-data, coined navigator method, was recently proposed in arXiv:2104.09518. Its efficacy was demonstrated in the simplest example possible, i.e. that of the mixed-correlator study of the 3D Ising Model. In this paper, we would like to show that the navigator method may also be applied to the study of the family of $d$-dimensional $O(N)$ models. We will aim to follow these models in the $(d,N)$ plane. We will see that the "sailing" from island to island can be understood in the context of the navigator as a parametric optimization problem, and we will exploit this fact to implement a simple and effective path-following algorithm. By sailing with the navigator through the $(d,N)$ plane, we will provide estimates of the scaling dimensions $(Δ_ϕ,Δ_{s},Δ_{t})$ in the entire range $(d,N) \in [3,4] \times [1,3]$. We will show that to our level of precision, we cannot see the non-unitary nature of the $O(N)$ models due to the fractional values of $d$ or $N$ in this range. We will also study the limit $N \xrightarrow[]{} 1$, and see that we cannot find any solution to the unitary mixed-correlator crossing equations below $N=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源