论文标题

高斯州的量子 - 跳跃与随机Schrödinger的动力学,具有二次哈密顿量和线性lindbladians

Quantum-jump vs stochastic Schrödinger dynamics for Gaussian states with quadratic Hamiltonians and linear Lindbladians

论文作者

Christie, Robson, Eastman, Jessica, Schubert, Roman, Graefe, Eva-Maria

论文摘要

可以分析具有二次汉密尔顿人和线性林金德斯人的系统,可以通过分析求解由Lindblad方程所描述的开放量子系统的高斯状态的动力学,显示出熟悉的耗散和变形现象。众所周知,Lindblad动力学可以表示为随机纯状动力学上的集合平均值,可以将其解释为单个实验实现,其中随机动力学的形式取决于测量设置。在这里,我们考虑了最初高斯州的量子突变和随机Schrödinger动力学。尽管平均两种脉络都会融合到同一lindblad动力学,但单个动力学可能会差异。对于随机的schrödinger方程,高斯状态在进化过程中仍然是高斯,其随机微分方程控制了相位空间中心的演变和协方差矩阵的确定性演变。与此相比,量子跳跃进化产生的个别纯状态动力学总体上并不能保持高斯。应用在非热派环境中为Hagedorn波袋开发的结果时,我们制定了一种生成量子跳跃轨迹的方法,该方法完全是根据基本高斯状态的演变来描述的。为了说明与Lindblad动力学相比,不同透明的行为,我们详细考虑了两个示例,这些示例可以在很大程度上可以在分析上进行,这是一种谐波振荡器,可容纳次数测量和一个阻尼的谐波振荡器。在这两种情况下,我们都强调了随机Schrödinger和量子跳动动力学的差异以及相似之处。

The dynamics of Gaussian states for open quantum systems described by Lindblad equations can be solved analytically for systems with quadratic Hamiltonians and linear Lindbladians, showing the familiar phenomena of dissipation and decoherence. It is well known that the Lindblad dynamics can be expressed as an ensemble average over stochastic pure-state dynamics, which can be interpreted as individual experimental implementations, where the form of the stochastic dynamics depends on the measurement setup. Here we consider quantum-jump and stochastic Schrödinger dynamics for initially Gaussian states. While both unravellings converge to the same Lindblad dynamics when averaged, the individual dynamics can differ qualitatively. For the stochastic Schrödinger equation, Gaussian states remain Gaussian during the evolution, with stochastic differential equations governing the evolution of the phase-space centre and a deterministic evolution of the covariance matrix. In contrast to this, individual pure-state dynamics arising from the quantum-jump evolution do not remain Gaussian in general. Applying results developed in the non-Hermitian context for Hagedorn wavepackets, we formulate a method to generate quantum-jump trajectories that is described entirely in terms of the evolution of an underlying Gaussian state. To illustrate the behaviours of the different unravellings in comparison to the Lindblad dynamics, we consider two examples in detail, which can be largely treated analytically, a harmonic oscillator subject to position measurement and a damped harmonic oscillator. In both cases, we highlight the differences as well as the similarities of the stochastic Schrödinger and the quantum-jump dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源