论文标题

记住意图:基于回顾性记忆的轨迹预测

Remember Intentions: Retrospective-Memory-based Trajectory Prediction

论文作者

Xu, Chenxin, Mao, Weibo, Zhang, Wenjun, Chen, Siheng

论文摘要

为了实现轨迹预测,大多数以前的方法都采用了基于参数的方法,该方法将所有可见的过去实例对编码为模型参数。但是,通过这种方式,模型参数来自所有可见的实例,这意味着大量无关的实例也可能涉及预测当前情况,从而扰乱了性能。为了在当前情况和可见实例之间提供更明确的联系,我们模仿了神经心理学中回顾性记忆的机制,并提出了一种基于实例的方法,该方法通过在训练数据中寻找类似的场景来预测试剂的运动意图。在Memonet中,我们设计了一对记忆库,以在培训集中明确存储代表性实例,充当神经系统中的前额叶皮层,以及可训练的记忆发音器,以适应在记忆库中使用类似情况的当前情况,其作用类似于基础神经节。在预测期间,Memonet通过使用内存回音器将内存与内存库中的相关实例回忆起以前的内存。我们进一步提出了一个两步轨迹预测系统,第一步是利用Memonet预测目的地,第二步是根据预测目的地来实现整个轨迹。实验表明,所提出的MEMONET将FDE提高了20.3%/10.2%/28.3%,从SDD/ETH-UCY/NBA数据集上的最佳方法提高了。实验还表明,我们的Memonet能够在预测过程中追溯到特定实例,从而促进更多的解释性。

To realize trajectory prediction, most previous methods adopt the parameter-based approach, which encodes all the seen past-future instance pairs into model parameters. However, in this way, the model parameters come from all seen instances, which means a huge amount of irrelevant seen instances might also involve in predicting the current situation, disturbing the performance. To provide a more explicit link between the current situation and the seen instances, we imitate the mechanism of retrospective memory in neuropsychology and propose MemoNet, an instance-based approach that predicts the movement intentions of agents by looking for similar scenarios in the training data. In MemoNet, we design a pair of memory banks to explicitly store representative instances in the training set, acting as prefrontal cortex in the neural system, and a trainable memory addresser to adaptively search a current situation with similar instances in the memory bank, acting like basal ganglia. During prediction, MemoNet recalls previous memory by using the memory addresser to index related instances in the memory bank. We further propose a two-step trajectory prediction system, where the first step is to leverage MemoNet to predict the destination and the second step is to fulfill the whole trajectory according to the predicted destinations. Experiments show that the proposed MemoNet improves the FDE by 20.3%/10.2%/28.3% from the previous best method on SDD/ETH-UCY/NBA datasets. Experiments also show that our MemoNet has the ability to trace back to specific instances during prediction, promoting more interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源