论文标题
根据rényi转移熵的时间序列的因果推断
Causal inference in time series in terms of Rényi transfer entropy
论文作者
论文摘要
从观察数据中揭示因果关系是非线性时间序列分析的重大挑战之一。在本文中,我们借助信息理论概念(称为Rényi信息度量)讨论了此主题。特别是,我们根据rényi转移熵来解决双变量时间序列之间的定向信息流。我们表明,通过适当地选择Rényi$α$参数,我们可以控制仅在基础分布的选定部分之间传输的信息。反过来,这提供了特别有效的工具来量化时间序列中的因果关系相互依赖性,在这种情况下,“黑天鹅”事件(例如尖峰或突然跳跃)的知识至关重要。在这方面,我们首先证明,对于高斯变量,Granger因果关系和Rényi转移熵完全相等。此外,我们还将此结果部分扩展到了重尾$α$ -Gaussian变量。这些结果允许在基于数据驱动的因果推理的基于自回旋和Rényi熵的信息理论方法之间建立联系。为了帮助我们的直觉,我们采用了Leonenko等。熵估计器和分析来自两个单向耦合的Rössler系统产生的双变量时间序列之间的Rényi信息流。值得注意的是,我们发现Rényi转移熵不仅使我们能够检测出同步的阈值,而且还提供了对混乱相关和同步阈值之间存在的瞬态状态结构的非平凡见解。此外,从rényi转移熵中,我们可以可靠地推断耦合的方向 - 因此,仅用于耦合强度较小的耦合强度,以使瞬时状态的发作值,即当两个Rössler系统耦合时,但尚未进入同步。
Uncovering causal interdependencies from observational data is one of the great challenges of nonlinear time series analysis. In this paper, we discuss this topic with the help of information-theoretic concept known as Rényi information measure. In particular, we tackle the directional information flow between bivariate time series in terms of Rényi transfer entropy. We show that by choosing Rényi $α$ parameter appropriately we can control information that is transferred only between selected parts of underlying distributions. This, in turn, provides particularly potent tool for quantifying causal interdependencies in time series, where the knowledge of "black swan" events such as spikes or sudden jumps are of a key importance. In this connection, we first prove that for Gaussian variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also partially extend this results to heavy-tailed $α$-Gaussian variables. These results allow to establish connection between autoregressive and Rényi entropy based information-theoretic approaches to data-driven causal inference. To aid our intuition we employ Leonenko et al. entropy estimator and analyze Rényi information flow between bivariate time series generated from two unidirectionally coupled Rössler systems. Notably, we find that Rényi transfer entropy not only allowed us to detect a threshold of synchronization but it also provided a non-trivial insight into the structure of a transient regime that exists between region of chaotic correlations and synchronization threshold. In addition, from Rényi transfer entropy we could reliably infer the direction of coupling - and hence causality, only for coupling strengths smaller that the onset value of transient regime, i.e. when two Rössler systems were coupled, but have not yet entered a synchronization.