论文标题
观察单可能性发光中非经典光子统计
Observation of Nonclassical Photon Statistics in Single-Bubble Sonoluminescence
论文作者
论文摘要
在一组特定条件下,液体内的空气泡可能会被困在超声驱动的驻波的触角中,并定期发出可见的光子(1,2)。可以用独立的眼睛看到这种声音到光现象的转化,称为声发光,并发生在多或单泡体制中。声发光辐射光谱分析将大约6,000 kelvin的温度归因于气泡(3-5) - 接近太阳的表面温度。在过去的几十年中,对气泡动力学,热力学和其他物理化学特性进行了充分探索和研究(6-8)。尽管提出了几种理论,例如热(黑体辐射)模型(9-11),冲击波理论(12),相变辐射(13,14)和真空量子电动力学(15,16),但提出了SonoLumumlumimansence的潜在物理学,但Sonolumumigansence的潜在物理学使Hithithero含有纯粹的谜题。在这里,我们通过实验研究了来自单可能性发光(SBSL)发射光子的光子数统计数据,采用了两种截然不同的技术,即测量多光子相关性和光子数(使用光子数 - 数分辨率检测器)。我们的发现表明,来自SBSL的发射光子具有亚硫化统计量,表明SBSL的非经典性质。我们观察到发射光子的低硫代统计统计数据可能有助于解释SBSL的物理。此外,考虑到非经典光源在量子技术中的重要性,这一发现将是铺平通往明亮量子光子源的途径的令人兴奋的里程碑。
A cavitation bubble inside a liquid, under a specific set of conditions, can get trapped in an antinode of the ultrasonically driven standing wave and periodically emits visible photons (1,2). This conversion of sound to light phenomenon, known as sonoluminescence, can be seen with unaided eyes and occurs in multi- or single-bubble regimes. The sonoluminescence radiation spectrum analysis attributes a temperature of about 6,000 Kelvin to the bubble (3-5) -- close to the sun's surface temperature. The bubble dynamics, thermodynamics, and other physicochemical properties are well-explored and studied over the past decades (6-8). Notwithstanding that several theories such as the thermal (black-body radiation) model (9-11), shock wave theory (12), phase transition radiation (13,14), and vacuum quantum electrodynamics (15,16) -- were proposed, the underlying physics of sonoluminescence has hitherto remained a puzzle. Here, we experimentally investigated the photon number statistics of the emitted photons from single-bubble sonoluminescence (SBSL), employing two distinctly different techniques, i.e., measuring multiphoton correlations and photon number (using a photon-number resolving detector). Our findings show that the emitted photons from SBSL possess sub-Poissonian statistics, indicating the nonclassical nature of the SBSL. Our observation of sub-Poissonian statistics of emitted photons may help to explain the physics of SBSL. In addition, considering the importance of nonclassical light sources in quantum technologies, this discovery would be an exciting milestone in paving the route towards a bright quantum photonics source.