论文标题

有效的神经网络分析,具有侵犯性总和

Efficient Neural Network Analysis with Sum-of-Infeasibilities

论文作者

Wu, Haoze, Zeljić, Aleksandar, Katz, Guy, Barrett, Clark

论文摘要

受到凸优化的可侵犯性方法的启发,我们提出了一种新的程序,用于分析具有分段线性激活功能的神经网络上的验证查询。鉴于凸松弛,超过了非凸激活函数,我们将激活函数的违规行为编码为成本函数,并相对于凸松弛的优化。设计的成本函数(称为限制总和)的设计是为了使其最小值为零,并且只有在满足所有激活功能时才能实现。我们提出了一种随机程序DeepSoi,以有效地最大程度地减少SOI。可以通过用DeepSoi在每个搜索状态下执行的凸面程序来实现基于规范的案例分析的完整搜索过程的扩展。使用DeepSoi扩展完整的搜索实现了多个同时目标:1)它指导搜索对反例; 2)它可以实现更明智的分支决定; 3)它创造了额外的绑定派生机会。对不同基准和求解器进行了广泛的评估证明了所提出的技术的好处。特别是,我们证明SOI显着提高了现有完整搜索程序的性能。此外,基于SOI的实施的表现优于其他最先进的完整验证者。我们还表明,我们的技术可以有效地改进由最近的对抗性攻击算法得出的扰动。

Inspired by sum-of-infeasibilities methods in convex optimization, we propose a novel procedure for analyzing verification queries on neural networks with piecewise-linear activation functions. Given a convex relaxation which over-approximates the non-convex activation functions, we encode the violations of activation functions as a cost function and optimize it with respect to the convex relaxation. The cost function, referred to as the Sum-of-Infeasibilities (SoI), is designed so that its minimum is zero and achieved only if all the activation functions are satisfied. We propose a stochastic procedure, DeepSoI, to efficiently minimize the SoI. An extension to a canonical case-analysis-based complete search procedure can be achieved by replacing the convex procedure executed at each search state with DeepSoI. Extending the complete search with DeepSoI achieves multiple simultaneous goals: 1) it guides the search towards a counter-example; 2) it enables more informed branching decisions; and 3) it creates additional opportunities for bound derivation. An extensive evaluation across different benchmarks and solvers demonstrates the benefit of the proposed techniques. In particular, we demonstrate that SoI significantly improves the performance of an existing complete search procedure. Moreover, the SoI-based implementation outperforms other state-of-the-art complete verifiers. We also show that our technique can efficiently improve upon the perturbation bound derived by a recent adversarial attack algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源