论文标题

流量匹配 - 有效的分子动力学的粗粒

Flow-matching -- efficient coarse-graining of molecular dynamics without forces

论文作者

Köhler, Jonas, Chen, Yaoyi, Krämer, Andreas, Clementi, Cecilia, Noé, Frank

论文摘要

粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新培训方法,它通过利用正常流量(一种生成的深度学习方法)结合了两种方法的优势。流量匹配首先训练标准化流以表示CG概率密度,这相当于最大程度地减少相对熵而无需迭代CG模拟。随后,该流量会根据学习分布生成样品和力,以通过力匹配来训练所需的CG自由能模型。即使不需要全部原子模拟的力,流动匹配的表现就超过了数据效率的数量级的经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。

Coarse-grained (CG) molecular simulations have become a standard tool to study molecular processes on time- and length-scales inaccessible to all-atom simulations. Parameterizing CG force fields to match all-atom simulations has mainly relied on force-matching or relative entropy minimization, which require many samples from costly simulations with all-atom or CG resolutions, respectively. Here we present flow-matching, a new training method for CG force fields that combines the advantages of both methods by leveraging normalizing flows, a generative deep learning method. Flow-matching first trains a normalizing flow to represent the CG probability density, which is equivalent to minimizing the relative entropy without requiring iterative CG simulations. Subsequently, the flow generates samples and forces according to the learned distribution in order to train the desired CG free energy model via force matching. Even without requiring forces from the all-atom simulations, flow-matching outperforms classical force-matching by an order of magnitude in terms of data efficiency, and produces CG models that can capture the folding and unfolding transitions of small proteins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源