论文标题

深度展开网络的操作员素描

Operator Sketching for Deep Unrolling Networks

论文作者

Tang, Junqi, Mukherjee, Subhadip, Schönlieb, Carola-Bibiane

论文摘要

在这项工作中,我们提出了一个新的范式,用于使用操作员素描设计有效的深层展开网络。深度展开的网络目前是成像反问题的最新解决方案。但是,对于高维成像任务,尤其是3D锥束X射线CT和4D MRI成像,由于需要多次计算高维正向和相邻操作员,因此深层展开的方案通常在记忆和计算方面效率低下。最近,研究人员发现,这种局限性可以通过随机一阶优化的成功启发,可以通过随机展开的方式来部分解决这种局限性。在这项工作中,我们使用素描技术在高维图像空间中近似产品,提出在随机展开时进一步加速。操作员素描可以与随机展开共同应用,以获得最佳的加速度和压缩性能。我们对X射线CT图像重建的数值实验证明了我们素描的展开方案的显着有效性。

In this work we propose a new paradigm for designing efficient deep unrolling networks using operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially the 3D cone-beam X-ray CT and 4D MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by stochastic unrolling with subsets of operators, inspired by the success of stochastic first-order optimization. In this work, we propose a further acceleration upon stochastic unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our sketched unrolling schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源