论文标题

使用软计算方法的多光谱卫星数据分类

Multispectral Satellite Data Classification using Soft Computing Approach

论文作者

Choudhury, Purbarag Pathak, Dutta, Ujjal Kr, Bhattacharyya, Dhruba Kr

论文摘要

卫星图像是远程感知的图像数据,每个像素代表地球上的特定位置。记录的像素值是从地球表面的反射辐射。多光谱图像是与对所有可见光的所有波长敏感的全磁性图像相比,在电磁光谱的特定频率上捕获图像数据的图像。由于这些图像的高分辨率和高维度,它们为聚类技术带来了困难,以有效地检测出不同尺寸,形状和密度的簇作为快速处理时间的折衷。在本文中,我们提出了一种基于网格密度的聚类技术来识别对象。我们还引入了一种使用基于规则的机器学习算法对卫星图像数据进行分类的方法。对象识别和分类方法已使用多个合成和基准数据集验证。

A satellite image is a remotely sensed image data, where each pixel represents a specific location on earth. The pixel value recorded is the reflection radiation from the earth's surface at that location. Multispectral images are those that capture image data at specific frequencies across the electromagnetic spectrum as compared to Panchromatic images which are sensitive to all wavelength of visible light. Because of the high resolution and high dimensions of these images, they create difficulties for clustering techniques to efficiently detect clusters of different sizes, shapes and densities as a trade off for fast processing time. In this paper we propose a grid-density based clustering technique for identification of objects. We also introduce an approach to classify a satellite image data using a rule induction based machine learning algorithm. The object identification and classification methods have been validated using several synthetic and benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源