论文标题

有限生成的组的定量Neumann引理

A quantitative Neumann lemma for finitely generated groups

论文作者

Gorokhovsky, Elia, Bon, Nicolás Matte, Tamuz, Omer

论文摘要

我们研究有限生成的组的coset覆盖功能$ \ mathfrak {c}(r)$:覆盖半径$ r $的球所需的无限索引子组的coset数。我们表明,$ \ mathfrak {c}(r)$至少是所有组的$ \ sqrt {r} $。此外,我们表明$ \ mathfrak {c}(r)$对于包括几乎是nilpotent和polycyclic组在内的一类符合组的类别是线性的,对于属性(t)组,它是指数的。

We study the coset covering function $\mathfrak{C}(r)$ of a finitely generated group: the number of cosets of infinite index subgroups needed to cover the ball of radius $r$. We show that $\mathfrak{C}(r)$ is of order at least $\sqrt{r}$ for all groups. Moreover, we show that $\mathfrak{C}(r)$ is linear for a class of amenable groups including virtually nilpotent and polycyclic groups, and that it is exponential for property (T) groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源