论文标题
17p/holmes的尘埃径的演变
Evolution of the Dust Trail of Comet 17P/Holmes
论文作者
论文摘要
2007年10月,彗星17p/holmes的大规模爆发是迄今为止彗星最大的爆发。我们提出了一个新的综合模型,描述了这种现象中产生的尘埃径的演变。该模型包括多颗粒蒙特卡洛方法,包括太阳辐射压力效应,由金星,地球和月球,火星,木星和土星引起的引力干扰以及灰尘颗粒与父彗星本身的重力相互作用。计算的准确性是通过在Orekit中的实现来实现的,Orekit的实现可以执行Dormad-Prince数值集成方法,其精度更高。我们通过模拟粒子从0.001 mm到1 mm的粒子种群,具有相应的球体对称弹性速度分布,并朝着太阳爆发建模,从而证明了模型的性能。该模型已补充并验证了与0.5和1转的通用节点中灰尘径迹的观察结果。在所有情况下,预测的步道位置都与观测值匹配。此外,在这项工作中首次观察到小径的沙漏图案。通过在模拟中使用爆发模型的变化,我们确定弹出粒子的球形对称性的假设会导致场景与观察到的沙漏模式兼容。使用这些数据,我们对爆发点附近的两次革命尘埃痕迹行为进行预测,该行为应通过2022年使用地面望远镜来检测到。
The massive outburst of the comet 17P/Holmes in October 2007 is the largest known outburst by a comet thus far. We present a new comprehensive model describing the evolution of the dust trail produced in this phenomenon. The model comprises of multiparticle Monte Carlo approach including the solar radiation pressure effects, gravitational disturbance caused by Venus, Earth and Moon, Mars, Jupiter and Saturn, and gravitational interaction of the dust particles with the parent comet itself. Good accuracy of computations is achieved by its implementation in Orekit, which executes Dormad-Prince numerical integration methods with higher precision. We demonstrate performance of the model by simulating particle populations with sizes from 0.001 mm to 1 mm with corresponding spherically symmetric ejection speed distribution, and towards the Sun outburst modelling. The model is supplemented with and validated against the observations of the dust trail in common nodes for 0.5 and 1 revolutions. In all cases, the predicted trail position showed a good match to the observations. Additionally, the hourglass pattern of the trail was observed for the first time within this work. By using variations of the outburst model in our simulations, we determine that the assumption of the spherical symmetry of the ejected particles leads to the scenario compatible with the observed hourglass pattern. Using these data, we make predictions for the two-revolution dust trail behavior near the outburst point that should be detectable by using ground-based telescopes in 2022.