论文标题

Gödel时空的有限温度应用

Finite temperature applications in Gödel space-time

论文作者

Santos, A. F., Khanna, Faqir C.

论文摘要

研究标量场中的温度效应非最少耦合到重力。使用热场动力形式主义。这是一种拓扑字段理论,它使我们能够计算出不同的效果,例如Stefan-Boltzmann定律和Casimir效应,在平等的基础上。假设Gödel时空作为引力背景,则计算这些现象。讨论了这些结果在宇宙开始时的可能含义。

Temperature effects in a scalar field non-minimally coupled to gravity are investigated. The Thermo Field Dynamics formalism is used. This is a topological field theory that allows us to calculate different effects, such as the Stefan-Boltzmann law and the Casimir effect, on an equal footing. These phenomena are calculated assuming the Gödel space-time as a gravitational background. A possible implication of these results at the beginning of the universe is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源