论文标题
远红外光子腔场对平方量点阵列磁化的影响
The effects of a far-infrared photon cavity field on the magnetization of a square quantum dot array
论文作者
论文摘要
在GAAS异质结构中定义的腔体量子点阵列的轨道和自旋磁化是在量子 - 电动力学密度功能理论(QEDFT)中计算的。为此,最近用于原子系统采用的基于梯度的交换和相关功能适用于提交给外部垂直质量均质磁场的托管二维电子气体(2DEG)。数值结果揭示了腔光子场对电子电荷分布和轨道磁化的非平凡变化的极化作用。我们讨论了其对每个点中电子数的依赖性以及对电子耦合强度的依赖性。特别是,计算出的光子戴的电子状态在费米能量周围的态度作为电子 - 光子耦合强度的函数,表明点中磁质岩石 - 核酸杆菌的形成。
The orbital and spin magnetization of a cavity-embedded quantum dot array defined in a GaAs heterostructure are calculated within quantum-electrodynamical density-functional theory (QEDFT). To this end a gradient-based exchange-correlation functional recently employed for atomic systems is adapted to the hosting two-dimensional electron gas (2DEG) submitted to an external perpendicular homogeneous magnetic field. Numerical results reveal the polarizing effects of the cavity photon field on the electron charge distribution and nontrivial changes of the orbital magnetization. We discuss its intertwined dependence on the electron number in each dot, and on the electron-photon coupling strength. In particular, the calculated dispersion of the photon-dressed electron states around the Fermi energy as a function of the electron-photon coupling strength indicates the formation of magnetoplasmon-polaritons in the dots.