论文标题
多视图梦:具有对比学习的多视图世界模型
Multi-View Dreaming: Multi-View World Model with Contrastive Learning
论文作者
论文摘要
在本文中,我们提出了多视图梦,这是一种新颖的增强学习推动者,用于通过扩展梦想,从多视图观察中进行综合识别和控制。当前的大多数强化学习方法都假定了单视图观察空间,这对观察到的数据施加了局限性,例如缺乏空间信息和遮挡。这使得从环境中获得理想的观察信息变得困难,并且是现实世界机器人应用程序的瓶颈。在本文中,我们使用对比度学习在不同观点之间训练共享的潜在空间,并展示如何使用专家的产品来整合和控制潜在状态的概率分布,以获取多种观点。我们还提出了多视图DreamingV2,这是多视图梦的一种变体,该变体使用分类分布来对潜在状态建模而不是高斯分布。实验表明,所提出的方法在现实的机器人控制任务中优于现有方法的简单扩展。
In this paper, we propose Multi-View Dreaming, a novel reinforcement learning agent for integrated recognition and control from multi-view observations by extending Dreaming. Most current reinforcement learning method assumes a single-view observation space, and this imposes limitations on the observed data, such as lack of spatial information and occlusions. This makes obtaining ideal observational information from the environment difficult and is a bottleneck for real-world robotics applications. In this paper, we use contrastive learning to train a shared latent space between different viewpoints, and show how the Products of Experts approach can be used to integrate and control the probability distributions of latent states for multiple viewpoints. We also propose Multi-View DreamingV2, a variant of Multi-View Dreaming that uses a categorical distribution to model the latent state instead of the Gaussian distribution. Experiments show that the proposed method outperforms simple extensions of existing methods in a realistic robot control task.