论文标题

Brooks的图表中的定理:$δ$颜色的单通道半流算法

Brooks' Theorem in Graph Streams: A Single-Pass Semi-Streaming Algorithm for $Δ$-Coloring

论文作者

Assadi, Sepehr, Kumar, Pankaj, Mittal, Parth

论文摘要

每个具有最高度$δ$的图表都可以使用简单的贪婪算法用$(δ+1)$颜色颜色。值得注意的是,最近的工作表明,即使在半流模型中,人们也可以找到这种着色。但是,实际上,几乎不需要$(δ+1)$颜色才能正确颜色图形。的确,著名的\ brooks的定理指出,在集团和奇数周期旁边的每个(连接)图都可以用$Δ$颜色颜色。我们还能在半流模型中找到$δ$颜色吗? 我们通过设计一种随机的半流算法来解决这个关键问题,该算法具有任何图形,具有很高的概率,可以正确地声明该图不是$δ$ - 可溶剂,或者输出图形的$δ$ - 颜色。 此结果的证明始于绕道。我们首先(证明是)确定以前流式着色方法以$δ$ - 颜色的方式失败的程度:例如,所有这些方法都可以用重复的边缘处理流,并且它们可以以$ O(n^2)$时间运行 - 我们证明这些任务都不是$δ$颜色的。但是,这些不可能的结果确切地指出了$δ$颜色时先前方法所缺少的内容。 然后,我们基于这些见解,以设计一种半流的算法,该算法使用$(i)$基于稀疏浓度分解的新型稀疏回收方法,以(部分)恢复(部分)恢复输入的“有问题”子图的“有问题的”子图,而这些算法构成了我们不可能的结果的基础,而这些方法是允许这些供您进行的新颜色的方法,并且是$(ii)$(ii)$(ii)$(ii)$(ii)的范围,该方法是在$(ii)进行控制的方法。对于半流算法而言,探索或找到“增强路径”通常是不可能的。我们认为,这两种技术都可以具有独立的兴趣。

Every graph with maximum degree $Δ$ can be colored with $(Δ+1)$ colors using a simple greedy algorithm. Remarkably, recent work has shown that one can find such a coloring even in the semi-streaming model. But, in reality, one almost never needs $(Δ+1)$ colors to properly color a graph. Indeed, the celebrated \Brooks' theorem states that every (connected) graph beside cliques and odd cycles can be colored with $Δ$ colors. Can we find a $Δ$-coloring in the semi-streaming model as well? We settle this key question in the affirmative by designing a randomized semi-streaming algorithm that given any graph, with high probability, either correctly declares that the graph is not $Δ$-colorable or outputs a $Δ$-coloring of the graph. The proof of this result starts with a detour. We first (provably) identify the extent to which the previous approaches for streaming coloring fail for $Δ$-coloring: for instance, all these approaches can handle streams with repeated edges and they can run in $o(n^2)$ time -- we prove that neither of these tasks is possible for $Δ$-coloring. These impossibility results however pinpoint exactly what is missing from prior approaches when it comes to $Δ$-coloring. We then build on these insights to design a semi-streaming algorithm that uses $(i)$ a novel sparse-recovery approach based on sparse-dense decompositions to (partially) recover the "problematic" subgraphs of the input -- the ones that form the basis of our impossibility results -- and $(ii)$ a new coloring approach for these subgraphs that allows for recoloring of other vertices in a controlled way without relying on local explorations or finding "augmenting paths" that are generally impossible for semi-streaming algorithms. We believe both these techniques can be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源