论文标题
自行车共享基于跨模式的知识共享的需求预测:一种基于图的深度学习方法
Bike Sharing Demand Prediction based on Knowledge Sharing across Modes: A Graph-based Deep Learning Approach
论文作者
论文摘要
自行车共享是城市运输系统越来越受欢迎的部分。准确的需求预测是支持及时重新平衡并确保服务效率的关键。大多数现有的自行车共享需求预测模型仅基于其自身的历史需求差异,这本质上是关于自行车作为封闭系统的共享以及忽略不同运输模式之间的相互作用。这尤其重要,因为自行车共享通常用于补充其他模式(例如,公共交通)。尽管最近进行了一些努力,但没有现有的方法能够利用具有异质空间单元的多种模式的时空信息。为了解决这一研究差距,本研究提出了一种基于图的深度学习方法,用于自行车共享需求预测(B-MRGNN),其多模式历史数据作为输入。跨模式的空间依赖性用多个模式内和模式间图编码。引入了多个关系图神经网络(MRGNN),以捕获跨模式之间的空间单位之间的相关性,例如自行车共享站,地铁站或乘车区。大量实验是使用纽约市的现实世界自行车共享,地铁和乘车数据进行的,结果表明,与现有方法相比,我们提出的方法的出色表现。
Bike sharing is an increasingly popular part of urban transportation systems. Accurate demand prediction is the key to support timely re-balancing and ensure service efficiency. Most existing models of bike-sharing demand prediction are solely based on its own historical demand variation, essentially regarding bike sharing as a closed system and neglecting the interaction between different transport modes. This is particularly important because bike sharing is often used to complement travel through other modes (e.g., public transit). Despite some recent efforts, there is no existing method capable of leveraging spatiotemporal information from multiple modes with heterogeneous spatial units. To address this research gap, this study proposes a graph-based deep learning approach for bike sharing demand prediction (B-MRGNN) with multimodal historical data as input. The spatial dependencies across modes are encoded with multiple intra- and inter-modal graphs. A multi-relational graph neural network (MRGNN) is introduced to capture correlations between spatial units across modes, such as bike sharing stations, subway stations, or ride-hailing zones. Extensive experiments are conducted using real-world bike sharing, subway and ride-hailing data from New York City, and the results demonstrate the superior performance of our proposed approach compared to existing methods.