论文标题
深度学习服务交通安全分析:前瞻性评论
Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review
论文作者
论文摘要
本文探讨了使用或有可能用于交通视频分析的深度学习(DL)方法,强调了自动驾驶汽车(AVS)和人类手术车辆的安全性。我们提出了一条典型的处理管道,该管道可用于通过提取操作安全指标并提供一般提示和指南来改善交通安全性来理解和解释流量视频。该处理框架包括几个步骤,包括视频增强,视频稳定,语义和事件分段,对象检测和分类,轨迹提取,速度估计,事件分析,建模和异常检测。我们的主要目标是指导流量分析师通过为每个步骤选择最佳选择,并通过对最成功的常规和基于DL的算法进行比较分析,从而为每个步骤提供比较分析,以开发自己的定制处理框架。我们还审查了可以帮助培训DL模型的现有开源工具和公共数据集。为了更具体,我们审查了示例性的交通问题,并提到每个问题需要步骤。此外,我们研究了与驾驶员认知评估,基于人群的监测系统,路边基础设施中的边缘计算,自动化驾驶系统(ADS)车辆(ADS)车辆的边缘计算的连接,并突出显示缺失的空白。最后,我们审查了交通监控系统的商业实施,其未来前景以及开放问题,以及在广泛使用此类系统方面遇到的挑战。
This paper explores Deep Learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasizing driving safety for both Autonomous Vehicles (AVs) and human-operated vehicles. We present a typical processing pipeline, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilization, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modeling and anomaly detection. Our main goal is to guide traffic analysts to develop their own custom-built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL-based algorithms proposed for each step. We also review existing open-source tools and public datasets that can help train DL models. To be more specific, we review exemplary traffic problems and mentioned requires steps for each problem. Besides, we investigate connections to the closely related research areas of drivers' cognition evaluation, Crowd-sourcing-based monitoring systems, Edge Computing in roadside infrastructures, Automated Driving Systems (ADS)-equipped vehicles, and highlight the missing gaps. Finally, we review commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems.