论文标题
圆环洛伦兹的链接通过曲线链接获得了完整的曲折
Torus Lorenz Links obtained by Full Twists along Torus Links
论文作者
论文摘要
已知所有结都是双曲线,卫星或圆环结,一个重要的家庭是洛伦兹链接或T-Links,这是由动力学引起的。但是,从描述通过动力学或作为T-Link确定Lorenz链接的几何类型仍然很难。在本文中,我们考虑了那些是圆环链接的T链接。我们表明,除了一个案件外,沿着圆环链接的完整曲线获得的T链接永远不可能是圆环链接。这解决了Birman和Kofman的问题。
All knots are known to be hyperbolic, satellite, or torus knots, and one important family is Lorenz links, or T-links, which arise from dynamics. However, it remains difficult to determine the geometric type of a Lorenz link from a description via dynamics or as a T-link. In this paper, we consider those T-links that are torus links. We show that T-links obtained by full twists along torus links can never be torus links, aside from a family of cases. This addresses a question of Birman and Kofman.