论文标题

各向异性部分反应性靶标

First-passage times to anisotropic partially reactive targets

论文作者

Chaigneau, Adrien, Grebenkov, Denis S.

论文摘要

我们研究了有限域中的限制扩散,朝着三维和高维空间中的一个小部分反应性靶标。我们为Laplace操作员的主要特征值提出了一个简单的显式近似,并具有混合的Robin-Neumann边界条件。这种近似涉及谐波容量和目标的表面积,限制域的体积,扩散系数和反应性。使用有限元方法检查近似的精度。所提出的近似值还确定了平均的第一反应时间,生存率的长期衰减以及该目标的总体反应速率。我们确定目标的相关长度尺度,这决定了其捕获能力,并研究了其与目标形状的关系。特别是,我们通过计算各种空间维度中的宽度和扁平球体的谐波能力来研究目标各向异性对主要特征值的影响。简要讨论了这些结果在化学物理学和生物物理学中的某些含义。

We investigate restricted diffusion in a bounded domain towards a small partially reactive target in three- and higher-dimensional spaces. We propose a simple explicit approximation for the principal eigenvalue of the Laplace operator with mixed Robin-Neumann boundary conditions. This approximation involves the harmonic capacity and the surface area of the target, the volume of the confining domain, the diffusion coefficient and the reactivity. The accuracy of the approximation is checked by using a finite-elements method. The proposed approximation determines also the mean first-reaction time, the long-time decay of the survival probability, and the overall reaction rate on that target. We identify the relevant length scale of the target, which determines its trapping capacity, and investigate its relation to the target shape. In particular, we study the effect of target anisotropy on the principal eigenvalue by computing the harmonic capacity of prolate and oblate spheroids in various space dimensions. Some implications of these results in chemical physics and biophysics are briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源