论文标题
具有随机变化高斯过程图的全稳定地形建模
Fully-probabilistic Terrain Modelling with Stochastic Variational Gaussian Process Maps
论文作者
论文摘要
高斯流程(GPS)由于其模型地图不确定性的能力而成为建立地形表示的标准工具。这有效地产生了地图区域的可靠性度量,可以通过贝叶斯过滤机器人定位问题直接利用。一个关键的见解是,这种不确定性可以通过GPS训练不确定输入(UIS)的能力来结合地形测量过程的噪声。但是,以可拖动方式构建使用UIS的现有技术以输入噪声的形式和程度受到限制。在这封信中,我们提出了一个灵活,有效的框架,以基于UIS分布的随机变化GP和Monte Carlo采样来构建大规模的GP图。我们在用AUV收集的大型测深调查上验证了我们的映射方法,并根据确定性输入(DI)分析了其性能。最后,我们显示使用UI SVGP映射如何比DI SVGP在完全预测的区域上的真实AUV任务上产生更准确的粒子过滤器定位结果。
Gaussian processes (GPs) are becoming a standard tool to build terrain representations thanks to their capacity to model map uncertainty. This effectively yields a reliability measure of the areas of the map, which can be directly utilized by Bayes filtering algorithms in robot localization problems. A key insight is that this uncertainty can incorporate the noise intrinsic to the terrain surveying process through the GPs ability to train on uncertain inputs (UIs). However, existing techniques to build GP maps with UIs in a tractable manner are restricted in the form and degree of the input noise. In this letter, we propose a flexible and efficient framework to build large-scale GP maps with UIs based on Stochastic Variational GPs and Monte Carlo sampling of the UIs distributions. We validate our mapping approach on a large bathymetric survey collected with an AUV and analyze its performance against the use of deterministic inputs (DI). Finally, we show how using UI SVGP maps yields more accurate particle filter localization results than DI SVGP on a real AUV mission over an entirely predicted area.